Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutr Res Pract ; 15(6): 686-702, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34858548

RESUMO

BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1ß, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1ß, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

2.
EXCLI J ; 20: 968-982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267609

RESUMO

Inflammation caused by the excessive production of pro-inflammatory mediators and cytokines in abnormally activated macrophages promotes the initiation and progression of many diseases along with oxidative stress. Previous studies have suggested that nargenicin A1, an antibacterial macrolide isolated from Nocardia sp. may be a potential treatment for inflammatory responses and oxidative stress, but the detailed mechanisms are still not well studied. In this study, we investigated the inhibitory effect of nargenicin A1 on inflammatory and oxidative stress in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish (Danio rerio) models. Our results indicated that nargenicin A1 treatment significantly inhibited LPS-induced release of pro-inflammatory mediators including nitric oxide (NO) and prostaglandin E2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. In addition, nargenicin A1 attenuated the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and monocyte chemotactic protein-1, reducing their extracellular secretion. Nargenicin A1 also suppressed LPS-induced generation of reactive oxygen species. Moreover, nargenicin A1 abolished the LPS-mediated nuclear translocation of nuclear factor-kappa B (NF-κB) and the degradation of inhibitor IκB-α, indicating that nargenicin A1 exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. Furthermore, nargenicin A1 showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. In conclusion, our findings suggest that nargenicin A1 ameliorates LPS-induced anti-inflammatory and antioxidant effects by downregulating the NF-κB signaling pathway, and that nargenicin A1 can be a potential functional agent to prevent inflammatory- and oxidative-mediated damage.

4.
Biosci Trends ; 14(1): 23-34, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32092745

RESUMO

The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.


Assuntos
Angelica/química , Melanoma Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Hipertrofia , L-Lactato Desidrogenase/antagonistas & inibidores , Pulmão/patologia , Neoplasias Pulmonares , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
5.
Phytother Res ; 33(12): 3228-3241, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486124

RESUMO

The peel of Citrus unshiu Marcow. fruits (CU) has long been used as a traditional medicine that has therapeutic effects against pathogenic diseases, including asthma, vomiting, dyspepsia, blood circulation disorders, and various types of cancer. In this study, we investigated the effect of CU peel on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells, and in B16F10 cells inoculated-C57BL/6 mice. Our results show that ethanol extracts of CU (EECU) inhibited cell growth and increased the apoptotic cells in B16F10 cells. EECU also stimulated the induction of mitochondria-mediated intrinsic pathway, with reduced mitochondrial membrane potential and increased generation of intracellular reactive oxygen species. Furthermore, EECU suppressed the migration, invasion, and colony formation of B16F10 cells. In addition, the oral administration of EECU reduced serum lactate dehydrogenase activity without weight loss, hepatotoxicity, nor nephrotoxicity in B16F10 cell-inoculated mice. Moreover, EECU markedly suppressed lung hypertrophy, the number and expression of metastatic tumor nodules, and the expression of inflammatory tumor necrosis factor-alpha in lung tissue. In conclusion, our findings suggest that the inhibitory effect of EECU on the metastasis of melanoma indicates that it may be regarded as a potential therapeutic herbal drug for melanoma.


Assuntos
Citrus/química , Frutas/química , Melanoma Experimental/dietoterapia , Metástase Neoplásica/tratamento farmacológico , Animais , Apoptose , Camundongos , Camundongos Endogâmicos C57BL
6.
Antioxidants (Basel) ; 8(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540482

RESUMO

The present study investigated the immunomodulatory activity of reduced glutathione (GSH) by assessment of the macrophage polarization (MP)-mediated immune response in RAW 264.7 cells. Furthermore, we identified the signal pathway associated with immune regulation by GSH. The expressions of MP-associated cytokines and chemokines were assessed using cytokine array, nCounter Sprit platform, ELISA and immunoblotting. Phagocytosis activity and intracellular reactive oxygen species (ROS) generation were measured using fluorescence-activated cell sorter. As results of the cytokine array and nCounter gene array, GSH not only up-regulated pro-inflammatory cytokines, including interleukins and tumor necrosis factor-α, but also overexpressed neutrophil-attracting chemokines. Furthermore, GSH significantly stimulated the production of immune mediators, including nitric oxide and PGE2, as well as phagocytosis activity through nuclear factor kappa B activation. In addition, GSH significantly decreased LPS-induced ROS generation, which was associated with an activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/ heme oxygenease-1 (HO-1) signaling pathway. Our results suggest that GSH has potential ROS scavenging capacity via the induction of Nrf2-mediated HO-1, and immune-enhancing activity by regulation of M1-like macrophage polarization, indicating that GSH may be a useful strategy to increase the human defense system.

7.
Antioxidants (Basel) ; 8(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939721

RESUMO

Reactive oxygen species (ROS), products of oxidative stress, contribute to the initiation and progression of the pathogenesis of various diseases. Glutathione is a major antioxidant that can help prevent the process through the removal of ROS. The aim of this study was to evaluate the protective effect of glutathione on ROS-mediated DNA damage and apoptosis caused by hydrogen peroxide, H2O2, in RAW 264.7 macrophages and to investigate the role of the nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. The results showed that the decrease in the survival rate of RAW 264.7 cells treated with H2O2 was due to the induction of DNA damage and apoptosis accompanied by the increased production of ROS. However, H2O2-induced cytotoxicity and ROS generation were significantly reversed by glutathione. In addition, the H2O2-induced loss of mitochondrial membrane potential was related to a decrease in adenosine triphosphate (ATP) levels, and these changes were also significantly attenuated in the presence of glutathione. These protective actions were accompanied by a increase in the expression rate of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) and poly(ADP-ribose) polymerase cleavage by the inactivation of caspase-3. Moreover, glutathione-mediated cytoprotective properties were associated with an increased activation of Nrf2 and expression of HO-1; however, the inhibition of the HO-1 function using an HO-1 specific inhibitor, zinc protoporphyrin IX, significantly weakened the cytoprotective effects of glutathione. Collectively, the results demonstrate that the exogenous administration of glutathione is able to protect RAW 264.7 cells against oxidative stress-induced mitochondria-mediated apoptosis along with the activity of the Nrf2/HO-1 signaling pathway.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30909475

RESUMO

Tacrolimus is widely used as an immunosuppressant to reduce the risk of rejection after organ transplantation, but its cytotoxicity is problematic. Nargenicin A1 is an antibiotic extracted from Nocardia argentinensis and is known to have antioxidant activity, though its mode of action is unknown. The present study was undertaken to evaluate the protective effects of nargenicin A1 on DNA damage and apoptosis induced by tacrolimus in hirame natural embryo (HINAE) cells. We found that reduced HINAE cell survival by tacrolimus was due to the induction of DNA damage and apoptosis, both of which were prevented by co-treating nargenicin A1 or N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, with tacrolimus. In addition, apoptosis induction by tacrolimus was accompanied by increases in ROS generation and decreases in adenosine triphosphate (ATP) levels caused by mitochondrial dysfunction, and these changes were significantly attenuated in the presence of nargenicin A1, which further indicated tacrolimus-induced apoptosis involved an oxidative stress-associated mechanism. Furthermore, nargenicin A1 suppressed tacrolimus-induced B-cell lymphoma-2 (Bcl-2) down-regulation, Bax up-regulation, and caspase-3 activation. Collectively, these results demonstrate that nargenicin A1 protects HINAE cells against tacrolimus-induced DNA damage and apoptosis, at least in part, by scavenging ROS and thus suppressing the mitochondrial-dependent apoptotic pathway.


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Imunossupressores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Tacrolimo/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Embrião de Mamíferos/citologia , Humanos , Lactonas/farmacologia , Nocardia/química
9.
Int J Mol Med ; 41(1): 264-274, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115385

RESUMO

Schisandrin A is a bioactive lignan occurring in the fruits of plants of the Schisandra genus that have traditionally been used in Korea for treating various inflammatory diseases. Although the anti-inflammatory and antioxidant effects of lignan analogues similar to schisandrin A have been reported, the underlying molecular mechanisms have remained elusive. In the present study, schisandrin A significantly suppressed the lipopolysaccharide (LPS)-induced production of the key pro-inflammatory mediators nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2 at the mRNA and protein levels in RAW 264.7 macrophages. Furthermore, schisandrin A was demonstrated to reduce the LPS-induced secretion of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-1ß; this was accompanied by a simultaneous decrease in the respective mRNA and protein levels in the macrophages. In addition, the LPS- induced translocation of nuclear factor-κB (NF-κB), as well as activation of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol­3 kinase (PI3K)/Akt pathways were inhibited by schisandrin A. Furthermore, schisandrin A significantly diminished the LPS-stimulated accumulation of intracellular reactive oxygen species, and effectively enhanced the expression of NF erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). These results suggested that schisandrin A has a protective effect against LPS-induced inflammatory and oxidative responses in RAW 264.7 cells by inhibiting the NF-κB, MAPK and PI3K/Akt pathways; these effects are mediated, at least in part, by the activation of the Nrf2/HO-1 pathway. Based on these results, it is concluded that schisandrin A may have therapeutic potential for treating inflammatory and oxidative disorders caused by over-activation of macrophages.


Assuntos
Ciclo-Octanos/administração & dosagem , Heme Oxigenase-1/genética , Inflamação/tratamento farmacológico , Lignanas/administração & dosagem , Proteínas de Membrana/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Compostos Policíclicos/administração & dosagem , Animais , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
10.
An Acad Bras Cienc ; 89(1 Suppl 0): 661-674, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28562828

RESUMO

Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.


Assuntos
Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Peixe-Zebra , Animais , Expressão Gênica , Genes Reguladores , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Prostaglandinas E/metabolismo , Células RAW 264.7 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
EXCLI J ; 16: 265-277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507472

RESUMO

Schisandrae Fructus, the fruit of Schisandra chinensis (Turcz.) Baill., is widely used in traditional medicine for the treatment of a number of chronic diseases. Although, Schisandrae Fructus was recently reported to attenuate the interleukin (IL)-1ß-induced inflammatory response in chondrocytes in vitro, its protective and therapeutic potential against osteoarthritis (OA) in an animal model remains unclear. Therefore, we investigated the effects of the ethanol extract of Schisandrae Fructus (SF) on inflammatory responses and cartilage degradation in a monosodium iodoacetate (MIA)-induced OA rat model. Our results demonstrated that administration with SF had a tendency to attenuate MIA-induced damage of articular cartilage as determined by a histological grade of OA. SF significantly suppressed the production of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α in MIA-induced OA rats. SF also effectively inhibited expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, thereby inhibiting the release of NO and prostaglandin E2. In addition, the elevated levels of matrix metalloproteinases-13 and two biomarkers for diagnosis and progression of OA, such as cartilage oligomeric matrix protein and C-telopeptide of type II collagen, were markedly ameliorated by SF administration. These findings indicate that SF could be a potential candidate for the treatment of OA.

12.
An. acad. bras. ciênc ; 89(1,supl): 661-674, May. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-886670

RESUMO

ABSTRACT Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.


Assuntos
Animais , Ratos , Peixe-Zebra , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Morus/química , Macrófagos/efeitos dos fármacos , Prostaglandinas E/metabolismo , Expressão Gênica , Genes Reguladores , Lipopolissacarídeos , Mediadores da Inflamação/antagonistas & inibidores , Células RAW 264.7 , Macrófagos/metabolismo , Óxido Nítrico/metabolismo
13.
J Cancer Prev ; 21(3): 144-151, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27722140

RESUMO

BACKGROUND: Immunoregulatory elements have emerged as useful immunotherapeutic agents against cancer. In traditional medicine, Mori folium, the leaf of Morus alba L. (Moraceae), has been used for various medicinal purposes; however, the immunomodulatory effects have not been fully identified. We evaluated the immunoenhancing potential of water extract of Mori folium (WEMF) in murine RAW264.7 macrophages. METHODS: RAW264.7 cells were treated with WEMF for 24 hours and cell viability was detected by an MTT method. Nitric oxide (NO) levels in the culture supernatants were assayed using Griess reagent. The productions of prostaglandin E2 (PGE2) and immune-related cytokines was measured using ELISA detection kits. The mRNA and protein expression levels of Inducible NO synthase, COX-2, and cytokines were assayed by reverse transcription-PCR and Western blotting, respectively. The effect of WEMF on phagocytic activity was measured using a Phagocytosis Assay Kit. RESULTS: WEMF significantly stimulated the production of NO and PGE2 as immune response parameters at noncytotoxic concentrations, which was associated with the increased expression of inducible NO synthase and COX-2. The release and expression of cytokines, such as TNF-α, interleukin (IL)-1ß, IL-6, and IL-10, were also significantly increased in response to treatment with WEMF. Moreover, WEMF promoted the macrophagic differentiation of RAW264.7 cells and the resulting phagocytosis activity. CONCLUSIONS: WEMF has the potential to modulate the immune function by regulating immunological parameters. Further studies are needed to identify the active compounds and to support the use of WEMF as an immune stimulant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...